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easures of chaos and equipartition in integrable
nd nonintegrable lattices
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We have simulated numerically the behavior of the one-dimensional, periodic FPU-alpha and Toda
lattices to optical and acoustic initial excitations of small-but finite and large amplitudes. For the
small-through-intermediate amplitudes �small initial energy per particle� we find nearly recurrent
solutions, where the acoustic result is due to the appearance of solitons and where the optical result
is due to the appearance of localized breather-like packets. For large amplitudes, we find complex-
but-regular behavior for the Toda lattice and “stochastic” or chaotic behaviors for the alpha lattice.
We have used the well-known diagnostics: Localization parameter; Lyapounov exponent, and slope
of a linear fit to linear normal mode energy spectra. Space-time diagrams of local particle energy
and a wave-related quantity, a discretized Riemann invariant are also shown. The discretized Rie-
mann invariants of the alpha lattice reveal soliton and near-soliton properties for acoustic excita-
tions. Except for the localization parameter, there is a clear separation in behaviors at long-time
between integrable and nonintegrable systems. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2165592�
o quantify the appearance of chaos in nonlinear Hamil-
onian lattice dynamics numerical experiments, we exam-
ne the properties of the: Maximum Lyapounov expo-
ents, energy spectra, and a shifted-discretized Riemann

nvariant (a wave-related quantity). At a time decreasing
ith an increasing average initial energy particle, we find
clear separation in behavior of these quantifiers when
e compare simulations of the nonintegrable FPU alpha
nd integrable Toda lattices. The former always shows
he approach to equipartition at long times.

NTRODUCTION

In this paper we explore the route to energy equipartition
r thermalization in a nonintegrable Hamiltonian lattice, the
lpha FPU lattice �Fermi, Pasta, and Ulam �1955��, by com-
aring the transient dynamics with the integrable Toda lattice
Toda, 1967a; 1967b; 1969; 1981�, which does not show en-
rgy equipartition. We use both acoustic �long wavelength�
nd zone-boundary mode �short wavelength� initial condi-
ions at several levels of excitation. Many valuable papers on
his subject have recently been presented in the Chaos Focus
ssue �Vol. 15� on the FPU problem. Of particular interest to
he present paper is the work of Berman and Izrailev �2005�,
auxois et al. �2005�, Pettini et al. �2005�, and Zabusky

2005�.
The primary goal of our paper is to compare the perfor-

ance of several diagnostics that bear on chaotic evolutions
hat may result in equipartition of energy among the modes
f the system. The secondary goal is to present a new near-
ecurrence for the alpha and Toda lattices when excited ini-
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tially by a localized optical excitation at low-to-intermediate
energies.

We examine the sharing of energy equally among all the
linear modal energies by calculating the slope of the line
fitted to all the linear modal energies; the maximum
Lyapounov exponent and a localization factor for physical
space energy density. For the acoustic mode, we also use a
discretized Riemann invariant as proposed in Zabusky
�1968�. This diagnostic reveals the coupling during the inter-
action of soliton-like pulses traveling along both left- and
right-propagating characteristic directions. We present visu-
alizations with space-time diagrams of local energy and
graphs of local energy and other revealing diagnostics. The
details of the largest Lyapounov exponent diagnostic are
given in the Appendix.

After Fermi-Pasta-Ulam, Zabusky and Deem were the
first to experiment systematically with the FPU alpha lattice.
Deem, Zabusky, and Kruskal �1965� produced a sequence of
computer generated animations, including simulations of the
alpha-lattice and the Korteweg-de Vries �KdV� equation
�pde�. With periodic boundaries and a single long-
wavelength-propagating-mode initial condition, they ob-
served near-recurrence for both the lattice and the pde
�Zabusky, 1969�. Tuck and Menzel �1972� initialized a low-
est mode with fixed boundary conditions and found a super
near-recurrence after 14 near recurrences. Izrailev and Chir-
ikov �1966�, for the beta lattice, presented an analytically
derived scaling law using the resonance-overlap idea. They
derived a transition boundary between regular and chaotic
evolution at high and low wave numbers of the initial exci-
tation. Zabusky and Deem �1967� claimed to have found
near-equipartition in a very short time calculation. They used

an initial Gaussian-modulated localized optical excitation

© 2006 American Institute of Physics0-1
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i.e., one that has a Gaussian envelope in physical space and
odulates the highest zone boundary �or �-� mode�. By
odern computational standards, all these simulations were

one for short times, and did not reveal the systematic tran-
ition to strong chaos and equipartition, as discussed below.

Equipartition for the FPU-alpha lattice with finite N was
rst illustrated numerically by Bochieri et al. �1970�. In care-
ully executed numerical work Casetti et al. �1997� focused
n Lyapounov exponents for the alpha and Toda lattices and
helepansky �1997� examined low energy chaos for the al-
ha lattice �see also Dauxois et al. �1997� and Dauxois et al.
1998��. Rink’s �2001� mathematical work focused on the
eriodic FPU lattice, in particular the beta lattice. Rink
2005� remarks, “¼�the alpha lattice� does not always seem
ntegrable or near-integrable as opposed to the beta lattice
hich has a full set of near integrals.” �Note, one must ex-

mine his work carefully and consider how he uses the term
near-integrable.”� Recently, Chechin et al. �2002, 2004�
ave identified groups or “bushes” of normal modes �or fixed
oint sets of the natural discrete symmetries� of the FPU
lpha and beta lattices, which are automatically invariant
anifolds. They applied Floquet methods to study the stabil-

ty of these bushes in one and two dimensions. For the one-
imensional �1D� alpha lattice some bushes are stable at low
nergy. The initial conditions in the present paper are not in
he special classes of these bushes. Thus, for any amplitude
f excitation, one expects eventual equipartition among all
he modes.

QUATIONS OF MOTION AND INITIAL CONDITIONS

The equations solved were

�o
−2ÿ j = �yj+1 − 2yj + yj−1��1 + ��yj+1 − yj−1�� , �1a�

�o
−2ÿ j = −

1

2�
�e2��yj−yj+1� + e2��yj−1−yj�� , �1b�

he �-lattice and the Toda lattice, respectively. The boundary
onditions were periodic over an interval of 2N coupled
asses. The “optical” or highest linear frequency of the lat-

ice is 2�o. In our simulations we assume �=�o=1 and vary
he initial conditions by changing the amplitude of the initial
xcitation. Note, because of the signs chosen in �1a� and
1b�, the Toda lattice with �=1 corresponds to the alpha
attice with �=−1.

For the acoustic initial conditions we chose a lowest
ode in the periodic domain. Here yj�0�=a sin�j� /N� and

ẏ j�0� was computed from the discretized Riemann invariant
as discussed below in Eq. �13a��, so as to obtain a positive
ropagating wave at low energies. For the optical initial con-
ition, we chose a localized Gaussian-modulated

yj�0� = �− 1� j� exp�− � j − N

�N
�2�, ẏ j�0� = 0,

j = 1,2, . . . ,2N . �2�

he Yoshida sixth-order symplectic integrator �Yoshida
1990�� was used with a time step of 0.01, or 628 time steps
or the period corresponding to the highest linear frequency

f the lattice. The floating point numbers were double preci-

oaded 11 Jan 2011 to 132.77.4.43. Redistribution subject to AIP licens
sion. To validate the computational code, we ran the alpha
lattice with the optical I.C. ��=0.188, �=1, �=0.1, N
=600� forward to t=3000 �300 000 steps� to obtain yn�3,000�
and ẏn�3,000�. With this precise data, we set the time interval
to a corresponding negative value and computed to 3000 to
obtain yn

*�0� and ẏn
*�0�. Figures 1�a� and 1�b� show that ẏn

*�0�
and yn

*�0�−yn�0�, have very small magnitudes. In particular
max	ẏn

*�0�	
2�10−12 and �1
2Nẏn

*�0�=5.69�10−16. The aver-
age displacement is negative, �1

2Nyn�0�=−7.69�10−11,
�1

2Nyn
*�0�=−2.59�10−11. These very small errors of the

Yoshida sixth-order symplectic integrator indicate that it can
perform long-time calculations with high accuracy.

WAVE AND OSCILLATION PHENOMENA

Continuum limits

For acoustic and optical small-amplitude initial excita-
tions all phenomena to long times may be obtained from two
variables. We rederive the Zabusky-Deem �1967� coupled
partial differential equations to facilitate a better understand-
ing of the observed phenomena presented below. For all ini-
tial excitations, we assume that the time step of the numeri-
cal simulations is sufficiently small and the integrator
sufficiently accurate so that temporal discretization errors
may be neglected.

First we label the odd and even masses, wn�y2n+1 and
zn�y2n and rewrite the single discrete equation �1a� as two
coupled equations. Next we expand w and z in a power series
in space, e.g., for w

wn±1 = w ± h�xw +
h2

2
�x

2w ±
h3

3!
�x

3w + ¯ ,

and substitute in these equations and then add and subtract

FIG. 1. The result of computing to t=3000 and reversing time and comput-
ing back to zero. �a� ẏn

*�0�, �b� yn
*�0�−yn�0�.
them. We introduce

e or copyright; see http://chaos.aip.org/about/rights_and_permissions
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u�x,t� =
w�x,t� + z�x,t�

2
, �3�

v�x,t� =
w�x,t� − z�x,t�

2
, �4�

nd obtain a coupled set of equations. For u

cA
−2�t

2u = �x
2u +

h2

4!
�x

4u +
h4

6!
�x

6u + 4�v�x�v +
h2

3!
�x

2v

+
h4

5!
�x

4v� + 2��xu�h2�x
2u +

h4

4!
�x

4u +
h6

6!
�x

6u�
+

h2

3!
�x

3u�h2�x
2u +

h4

4!
�x

4u� +
h4

5!
�x

5u�h2�x
2u��

+ 2��xv�h2�x
2v +

h4

4!
�x

4v +
h6

6!
�x

6v�
+

h2

3!
�x

3v�h2�x
2v +

h4

4!
�x

4v� +
h4

5!
�x

5v�h2�x
2v��

+ O�h6� + O��h6� , �5�

nd a comparable equation for v. Here, cA=h�o is the acous-
ic speed and two small parameters, � and h, where �=2�h
nd h=L/N is the length interval between the masses. If
igher-order terms are omitted, we obtain the equations in-
roduced by Zabusky and Deem �1967�

cA
−2�t

2u = �x
2u +

h2

12
�x

4u + 4�v�x�v +
1

6
�x

2v�
+

�

2
�x���xu�2 + ��xv�2� + O��h2� + O�h2� , �6a�

�o
−2�t

2v = − 4v − h2�x
2v −

h4

12
�x

4v − 4�v�x�u +
h2

6
�x

2u�
−

�h2

2
�x���xu���xv�� + O��h2� + O�h2� , �6b�

here u�x , t� corresponds to the acoustical region and v�x , t�
orresponds to the optical or zone-boundary region. Thus, if
��h4�=0 and h4�1 and ��1: The u-phenomena �acoustic
otions� are described by a dispersively modified nonlinear

yperbolic equation which is forced by even �quadratic�
erms of v. The v-phenomena �optical oscillations� are de-
cribed by a dispersively modified oscillator equation which
s forced by products of odd terms in v and u. The
ispersive-modification of the latter causes the energy to
spread ” from its initial compact location and finally result
n a configuration which is modulationally unstable. An array
f localized high frequency packets (possibly discrete breath-
rs), emerge and interact. At low to intermediate energies we
ee a new near-recurrent behavior for both alpha and Toda
attices, as described below.

First, let us discuss several simple continuum models.
or initial long wavelength small-but-finite acoustic excita-

ions, we set v=0. Since the nonlinear terms provide the

rimary source of energy coupling among the modes which

oaded 11 Jan 2011 to 132.77.4.43. Redistribution subject to AIP licens
can lead to chaos, we first focus on the dispersionless equa-
tion obtained by omitting terms O�h2� in �6a�, and obtain the
nonlinear hyperbolic pde

cA
−2�t

2u − �1 + ��xu��x
2u = 0. �7�

This can be written as the coupled set of first-order Riemann
invariant equations

cA
−1�tr± = 	 �1 + �3�/2��r+ + r−��1/3��xr±� = 0 �8a�

or

cA
−1�tr± = 	 �1 + ��/2��r+ + r−����xr±� + O��2� , �8b�

where

r± = � 1
2��±cA

−1�tu + �2/3����1 + ��xu�3/2 − 1�� , �9a�

or

�xu = �−1�1 +
3�

2
�r+ + r−��2/3

− 1, �9b�

and

cA
−1�tu = �r+ − r−� . �9c�

Zabusky �1962� and Kruskal and Zabusky �1964� first
showed that a singularity in �xu develops in a finite time.
Thus, if we include the next, fourth derivative, dispersive
term from the u equation and expand in a power series, then
Eq. �8b� generalizes to

cA
−1�tr± = 	 �1 + ��/2��r+ + r−����xr±�

	 �h2/24��xxx�r+ + r−� + O��2� + O��h2� + O�h4� .

�10�

If we choose an initial condition such that r+�x ,0�=0, and
assume a weak nonlinear process, we may omit the evolution
of r+�x , t� and so obtain

�t*r̃ = ��/2�r̃��x*r̃� + �h2/24���x*x*x*r̃� , �11�

where t*=cAt ,x*=x−cAt, and r̃=r�x* , t*�. This is the inte-
grable Korteweg deVries equation, which describes, in a
“shifted” reference frame, the evolution of weak nonlinear
phenomena on the alpha and Toda lattices for long times, as
discussed below.

ACOUSTIC EXCITATIONS

In the mid and late 60’s, Zabusky, Kruskal, and Deem,
motivated by their solutions of the Korteweg-de Vries �KdV�
equation on a periodic domain �Deem, Zabusky, and
Kruskal, 1965; Zabusky and Kruskal, 1965�, used a periodic
alpha-lattice and also found near recurrences �Zabusky,
1969; Zabusky, 1981�.

The time derivative of the acoustic I.C. was obtained by
first discretizing the Riemann invariant �9a� with

r̃±�n,t� = 1
2�±�N/�o��tyn

+ 1
3 �N/����1 + 2��yn+1 − yn��3/2 − 1�� ,
�1 
 n 
 2N� . �12�

e or copyright; see http://chaos.aip.org/about/rights_and_permissions
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ote, we have used a simple forward difference for the first
pace derivative. For ease, we set yn�0�=a sin�n� /N�, �1

n
2N�, and r̃+�n ,0�=0, then

ẏn�0� =
1

3
��o/���1 − �1 + 2��yn+1 − yn��3/2� , �13a�

r

ABLE I. Parameters for acoustic �Ac.� and optical �Opt.� simulations for
attice of length 2N. Here �= �Total energy� /2N.

attice I.C. � 104� a or � Total energy N

Ac. NA 3.01 1 0.077 128
Opt. 0.1 28.2 0.15 0.720 128

oda Opt. 0.1 28.2 0.148 456 0.720 128
Ac. NA 28.2 3.057 84 0.720 128

oda Ac. NA 28.2 3.056 764 0.720 128
Opt. 0.1 5.63 0.212 132 1.441 128

oda Opt. 0.1 5.63 0.207 874 1.441 128
Ac. NA 5.63 4.327 82 1.441 128

oda Ac. NA 5.63 6.097 945 1.441 128
Opt. 0.1 113 0.3 2.883 128

oda Opt. 0.1 113 0.288 524 2.883 128
Ac. NA 113 6.117 34 2.883 128

oda Ac. NA 113 6.108 73 2.883 128
Opt. 0.1 0.501 0.020 0.020 200
Opt. 0.1 4.51 0.180 0.180 200
Opt. 0.1 33.3 1.33 1.33 200
Opt. 0.1 133 5.32 5.32 200
Opt. 0.1 443 5.32 5.32 600

IG. 2. �Color� S-t diagram of shifted-r−�n , t� for � lattice with the acoustic
.C. ��=1 and a=1,�=3.01�10−4� up to t=60 000. The three arrows from
ottom to top point out 1

4TR, 1
3TR, and 1

2TR, respectively.
oaded 11 Jan 2011 to 132.77.4.43. Redistribution subject to AIP licens
r−�n,0� =
1

3
�N/����1 + 2��yn+1 − yn��3/2 − 1�

= a� cos���n +
1

2
��

−
��a�2

8N
�cos�2��n +

1

2
�� − � + O�N−2� . �13b�

In �13b� and below we suppress the tilde, previously used to
designate the discretized invariant. In the work below, the
identical initial conditions are used for the Toda lattice, de-
spite the fact that they are not the corresponding Riemann
invariants for the continuum of the Toda lattice. To make the
appearances of the r− s-t diagrams similar to KdV s-t dia-
grams, we plotted the results in a Galilean frame moving to
the right with cA, the linear acoustic speed. That is, on the
shifted s-t diagram the characteristic of a right-going linear
acoustic wave would be a vertical line.

A sample result of the shifted-r− �n , t� s-t diagram is
shown in Fig. 2 for 2N=256, �=1, a=1, and �=3.01
�10−4. �See Table I for the parameters used for all runs in
this paper.� We now describe the phenomena that was first
observed by Zabusky and Kruskal �1965� for the KdV equa-
tion: At early times, one sees characteristics converging in
space at N=64 at the “breakdown” time tB=1800; emerging
immediately and moving to the right at the highest speed is
the strongest acoustic “near-soliton;” at about 7000 it col-

FIG. 3. The maximum and minimum of r+ and r− vs time for � lattice with
the acoustic I.C. of Fig. 1 ��=1, a=1,�=3.01�10−4� up to t=40 000. From
top to bottom shows max�r−�, max�r+�, min�r+�, and min�r−�, respectively.

FIG. 4. The maximum and minimum of r+ and r− vs time for � lattice with
the acoustic I.C. ��=1, and a=1,�=3.01�10−4� up to t=300 000. From top

to bottom shows max�r−�, max�r+�, min�r+�, and min�r−�, respectively.

e or copyright; see http://chaos.aip.org/about/rights_and_permissions
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IG. 5. �Color� Shifted r− for � and Toda lattice with the acoustic I.C., N=128 and �=5.63�10−3. �a� s-t diagram for � lattice up to t=3000; �b� s-t diagram
or Toda lattice up to t=3000; �c� at t*=1500, where ta is for Toda lattice, and aa is for � lattice; �d� s-t diagram for �—lattice up to t=60 000; �e� s-t diagram
or Toda lattice up to t=60 000.
oaded 11 Jan 2011 to 132.77.4.43. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions
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ides with a left going pulse. We say, near-soliton, because
he alpha lattice is nonintegrable. A total of 16 pulses
merge. The collisions between large-amplitude near-solitons
lso exhibit the well-known phase shifts of KdV solitons.
he data is for the time interval to just beyond half of a
ear-recurrence or 1

2TR=52 000. At the arrows at left, one
ees the fraction of the near-recurrence times, 1

4TR, 1
3TR, and

1
2TR, times where 4, 5+, and 8 near solitons cluster along the

axis in 4,3, and two groups, respectively.
Another, more quantitative, viewpoint is obtained by

lotting versus t, the max and min of r− and r+. Note, r+ is
nitially zero and its growth is a measure of the coupling of
he information flow along the characteristics of the lowest
rder hyperbolic equation. Figure 3 shows that the initial
ear sine wave of amplitude 3.15 exhibits a breakdown at t
1800 and the leading pulse amplitude grows to 8.2,
hereas the mean of min r− is about 3.1. At tB the max and
in of r+ grow from zero to 0.8. There follows a harmonic

IG. 6. Toda lattice with the acoustic I.C. ��=5.63�10−3�. The maximum
nd minimum of r− and r+ vs time for to t=3�105. From top to bottom:
ax�r−�, max�r+�, min�r+�, and min�r−�, respectively.

IG. 8. �Color� Space-time diagrams of the energy of particle j for the �
−2
0.1, N=600; �b� �=0.326 or �=1.33�10 ,�=1, �=0.1, N=200.

oaded 11 Jan 2011 to 132.77.4.43. Redistribution subject to AIP licens
type oscillation where max r+ and min r+ are 180 deg out of
phase. These diagrams on a larger time scale are shown in
Fig. 4 and one sees clear evidence of the first near-recurrence
at 104 000.

Larger amplitude cases for the alpha and Toda lattices
are shown in Figs. 5�a�–5�e�.

Note we chose to compare lattices with the same initial
average energy, rather than amplitude. Here for both, the
energy per unit mass is �=5.63�10−3 �aalpha=4.33 and
aToda=6.10�.

In Figs. 5�a� and 5�b� �short times for both lattices�, we
see the emergence for: The alpha lattice of near-solitons
�white in B/W and red in color�; the Toda lattice of solitons
�black in B/W or blue in color�. The breakdown time is 400
and one observes the converging characteristics at n=64 for
alpha and n=192 for Toda. �This follows because the Toda

FIG. 7. � lattice with the acoustic I.C. ��=5.63�10−3�. The maximum and
minimum of r− and r+ vs time r to t=2�106. At early time from top to
bottom we have max�r−�, max�r+�, min�r+�, and min�r−�, respectively.

e with optical I.C. �a� �log 10-scale� �=0.188 or �=4.43�10−3 ,�=1, �
lattic
e or copyright; see http://chaos.aip.org/about/rights_and_permissions
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attice of Eq. �1b� has an � which differs in sign from the
PU � lattice.� A beautiful array of “rays,” the soliton trajec-

ories, begins to emerge and one observes thirteen proceed-
ng to the right �i.e., with speeds faster than acoustic� and the
emainder proceeding to the left. A slice at t=1500 is shown
n Fig. 5�c� and one counts 37 maxima for the alpha lattice
nd 37 minima for the Toda lattice. The shifted-r−�n , t� space
ime diagram shows a cleaner recurrence for Toda than alpha
ecause Toda is integrable and because the dynamics of al-
ha are becoming chaotic, as discussed below. In both cases
he first near-recurrence is at t=5.2�104.

We observe a new unusual effect, most clearly in Fig.
�e�, on the shifted-r−�n , t� diagram just beyond tB. This phe-
omenon is associated with the accumulation of phase shifts
ue to the crowding of near-solitons and packets on a lattice
hen it is excited by a large amplitude acoustic mode. As
abusky first noted and has been subsequently shown for the
dV equation, the number of solitons, which emerge from a

ingle long wavelength harmonic, increases with increasing
nitial amplitude �or average energy�. This is evident in the
eaks, which emerge from the initial state �red for alpha-
attice and blue for Toda lattice�. As these maxima �alpha
attice� grow in amplitude, the strong ones begin to turn to
he right. However, when the right going largest amplitude
eak interacts with the mid-amplitude peaks phase shifts are
nduced. The accumulation of many phase shifts causes sev-
ral mid-amplitude peaks to move at a reduced average
peed. This is most readily seen along a discontinuity in
lope of the wave-max trajectory at early times in the range
0�n�186.

In Fig. 5�d� we compare the s-t of r−�n , t� over the time
nterval 60 K, including the first recurrence. One sees a clean
onvergence of rays for Toda and a more chaotic one for

IG. 10. �Color� Space-time diagrams of the energy of particle j. �a� � lat
−5
attice with optical I.C. ��=0.02 or �=5.01�10 ,�=1,�=0.1,N=200�.

oaded 11 Jan 2011 to 132.77.4.43. Redistribution subject to AIP licens
alpha. This chaos in convergence of near-solitons is a conse-
quence of the lack of integrability. �In fact, one finds the
maximum Lyapounov exponents in Fig. 20 below diverge
after the first recurrence.� The curves for max r−, max r+,
min r+, min r− for Toda �Fig. 6� and alpha �Fig. 7� are more
revealing. The first shows very steady oscillations of nearly
constant mean magnitude. However, the mean magnitudes
are alpha, 34, and Toda, −28. Comparing max r− for Toda
shows very recognizable behaviors, including signatures for
near recurrence at t=52, 104, and 156 K.

Figure 7 shows a much larger variance growth and then
as the system becomes chaotic �as discussed below with
other diagnostics� both corresponding sets of curves merge,
namely the curve of max r− merges with max r+ and the
curve of min r+ merges with min r−. The mean and variance
of the curves are both increasing monotonically in magni-
tude. It would be interesting to relate these differences in the
curves to a quantitative diagnostic for integrability.

FIG. 9. Energy of particle j for the � lattice with optical I.C. �a� �log 10
scale� �=0.188 or �=4.43�10−3 ,�=1,�=0.1,N=600. The curve for t=0
is plotted at 0.25 of its true magnitude. Note the spreading between the
curves at t=0 and t=595.

ith optical I.C. ��=0.02 or �=5.01�10−5 ,�=1,�=0.1,N=200�; �b� Toda
tice w
e or copyright; see http://chaos.aip.org/about/rights_and_permissions
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PTICAL EXCITATIONS

Here we set

yj�0� = �− 1� j� exp�− � j − N

�N
�2�, ẏ j�0� = 0,

j = 0,1,2, . . . ,2N − 1. �14�

e present readily available longer time calculations, which
xhibit a modulational instability and a new near recurrence
t small-to-intermediate excitation amplitudes.

In Fig. 8, we show the behavior at short times of the �
attice with the optical I.C. �=0.188 or �=4.43�10−3 ,
=1 ,�=0.1,N=600 and �=0.326 or �=1.33�10−2 ,�=1,
=0.1,N=200. We see acoustic pulses emerge symmetri-

ally and strike the boundaries �filled circles� at t=600 and
=200, respectively. The amplitudes of these Gaussian pulses
re in very good agreement with an asymptotical analysis of
he Zabusky-Deem equations �1967�. The central region �red
n the internet� is the spreading optical excitation riding on a

IG. 11. Localized packet extracted from data corresponding to Fig. 10�a�
� lattice with optical I.C.� ��=0.02 or �=5.01�10−5 ,�=1,�=0.1,N
200� at the time t=8510 where there are four packets on the axis.

IG. 12. �Color� Localized packet extracted from data corresponding to Fig.
−6
0�a� �� lattice with optical I.C.� ��=8.36�10 ,�=1,N=200�.

oaded 11 Jan 2011 to 132.77.4.43. Redistribution subject to AIP licens
smooth gradient �as discussed below�. If one compares the
rate of increase of the width of the largest �red� region, one
sees that the spreading rate increases with the amplitude of
the initial excitation. Furthermore, for both excitations the
acoustic pulse begins to develop oscillatory-soliton structure
at t�1200 and t�200 in Figs. 8�a� and 8�b�, respectively.

This energy is also shown in Fig. 9 �corresponding to
Fig. 8�a�� at three times. �Note the curve for t=0 is a Gauss-
ian and is plotted at 0.25 scale.�

Figure 10 shows the s-t diagram for this run compared to
the Toda lattice, which has an almost identical appearance. In

FIG. 13. First derivative filter, Eq. �15�, for the FPU � lattice at t=595. Note
that the acoustical and optical states are single smooth positive and negative
curves, respectively. Also, note the symmetrical emergence of slow translat-
ing “three-curve” packets.

FIG. 14. First derivative filter, Eq. �15�, for the FPU � lattice at t=1790.
Note that the left and right translating acoustical states have evolved while
crossing the entire lattice from t=595 �Fig. 13� and the symmetrical trans-
lating “three-curve” packets have approached closer to the left and right

boundaries.
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oth cases a modulational instability arises and localized
ackets, possibly related to discrete breathers, emerge. These
ackets interact and focus at t=51000. Note, the modula-
ional instability was first analyzed for a pure zone-boundary

IG. 15. Localization parameter C0 for � lattice with optical I.C. �a� �
0.02 or �=5.01�10−5, �=1, �=0.1, N=200; �b� �=0.02 or �=5.01
10−5, �=1, �=0.1, N=200; �c� �=0.06 or �=4.51�10−4, �=1, �=0.1,
=200; �d� �=0.163 or �=3.33�10−3, �=1, �=0.1, N=200; �e� �
0.326 or �=1.33�10−2, �=1, �=0.1, N=200.
ode initial excitation by Budinsky and Bountis �1983�.

oaded 11 Jan 2011 to 132.77.4.43. Redistribution subject to AIP licens
The physical and mathematical behavior of these inter-
acting packets is yet to be understood. As a tentative step we
elucidate the evolution of one packet extracted from the data
at t=8150 and placing it centrally on the lattice, as shown in
Fig. 11, where yn�8150� is above and ẏn�8150� is below.
Note, although the extracted packet is a zone boundary ex-
citation, its displacement is like a discrete breather because
the values at left and right are of different magnitude. Evolv-
ing this state forward with fixed boundary conditions pro-
duces the energy space-time diagram in Fig. 12. Remarkably,
there is a recurrence. at about the same time, although the
focus point is now at the center of the lattice. So these dis-
crete breathers, although unstable, have a remarkable persis-
tence on the periodic and fixed-boundary lattices.

Diagnostic for optical excitations

Although the positive definite energy s-t diagrams and

FIG. 16. Localization parameter C0 for �a� Toda lattice with optical I.C.,
�=0.02 or �=5.01�10−5, �=1, �=0.1, N=200; �b� Toda lattice with opti-
cal I.C., �=0.2885 or �=1.13�10−2, �=1, �=0.1, N=128; �c� Toda lattice
with acoustic I.C., a=6.11 or �=1.13�10−2, �=1, N=128.
slices present a global view, they do not allow a quantitative

e or copyright; see http://chaos.aip.org/about/rights_and_permissions
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ppreciation of small but significant effects. We have devel-
ped a filter which approximates a spatial derivative and
hich we designate as

�xūj � 1
2�xyj + 1

16�9�xyj+1 + xyj−1�

− �xyj+3 + xyj−3��� , �15�

here xyj ��yj+1−yj−1� /2h. If the displacements lie along
ne smooth curve �an acoustic state� then a continuum Taylor
eries expansion yields

�xū → 2yx + 45
h4

5!
yxxxxx + 0�h6� ,

nd if the displacements alternate in sign but each lies along
he same smooth curve �an optical state�

�xū → + 2
h2

3!
yxxx − 43

h4

5!
yxxxxx + 0�h6� .

f the displacement is a mixture of acoustical and optical
xcitations �e.g., as in our initial condition where the enve-
opes are Gaussian�, then the acoustical signature dominates.

Figure 13 shows �xū at t=595 and one sees the overlap-
ing acoustical pulses at the boundary and a smooth region
80�n�720. Also significant is the “three-curve” state ra-
iating symmetrically at 320�n�410 and 790�n�820.

Figure 14 shows �xū at t=1790 and one sees that the
verlapping acoustical pulses at the boundary are modulated
ith emerging solitons and a smooth region that covers the

ntire lattice. The “three-curve” is at 80�n�400 and 800

IG. 17. �Color� Space-time diagrams of the energy of particle j of Toda la
=0.326 or �=1.47�10−2, �=1, �=0.1, N=200.
n�1120.
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Diagnostics for chaotic evolutions

We now examine the use of the “localization parameter”

C0�t� = N�
j=1

2N

Ej
2���

j=1

2N

Ej�2

, �16�

to characterize the motion of the �- and Toda lattices, where

Ej = 1
2 �ẏ j/�o�2 + 1

4 ��yj − yj−1�2 + �yj+1 − yj�2�

+ 1
6���yj − yj−1�3 + �yj+1 − yj�3� �17�

and

Ej =
1

2
�ẏ j/�o�2 −

1

4�2 �e2��yj−yj+1� + e2��yj−1−yj�

− 2��yn−1 − yn+1� − 2�� . �18�

If all particles have the same energy �thermalization�, C0�t�
=1.0. In Figs. 15 and 16, we show results for the �- and Toda
lattices. For eta=0.02, Figs. 15�a� and 15�b�, we see a regular
pattern �reminiscent of the modal energy variation for the
FPU acoustic initial excitation�. This near recurrent process
continues to over 100 near recurrence times! In Figs.
15�c�–15�e�, we observe the curve becoming more chaotic
and for the largest eta, we see the mean of C0
1.8, the
lowest of the set �which corresponds to energy equipartition.
The C0 of Fig. 16 �for the Toda lattice� corresponds to
Fig. 15�a� and has the same appearance and same recurrence
time.

Figures 17�a� and 17�b� show the Toda lattice at high

with optical I.C. �a� �=0.163 or �=3.41�10−3, �=1, �=0.1, N=200; �b�
ttice
energies. Surprisingly, the near-recurrence is still at t

e or copyright; see http://chaos.aip.org/about/rights_and_permissions



=
v
fi
e
s

L

L
�
m
s
T
i

l
b
s
t
r
t

F
t
�

F
w
t
�

013130-11 Measuring chaos in nonlinear lattices Chaos 16, 013130 �2006�

Downl
50 000, but its character is unusual. In a narrow time inter-
al we observe a focusing and defocusing that is unlike the
rst appearance of these structures. There is still much to
xplain with respect to the interaction of these new coherent
tructures.

yapounov exponents and energy spectra

The nondecreasing variation of the maximum
yapounov exponent �Casetti et al. �1997� and Pettini et al.
2005�� and the equidistribution of energy among the Fourier
odes have been used to characterize the onset of chaotic or

tochastic behavior of a system. A typical spectrum of the
oda lattice and the linear fit with negative slope are shown

n Fig. 18.
We now compare these quantities for the alpha and Toda

attice in Fig. 19. Note, at t
800, after an initial transient,
oth acoustic and optical evolutions �positive and negative
lopes, respectively� have nearly identical slopes. At t=105

he magnitude of the �-lattice slopes begin to decrease and
each at t=106 whereas the Toda lattice slopes continue with
he same average values.

IG. 18. The spectrum �dashed lines� in log-log scale of Toda lattice with
he optical I.C. �=1.304 or �=9.44�10−1, �=1, �=0.1, N=128 at t=6

104. The straight solid line is the linear fit of log�E�k�� vs log�k�.

IG. 19. The variation in slope of the linear fit of log10�E�k�� vs log10�k�,
here aa—� lattice with acoustic I.C.; ao—� lattice with optical I.C.;

a—Toda lattice with acoustic I.C.; to—Toda lattice with optical I.C.; and
−3
=5.63�10 for all.

oaded 11 Jan 2011 to 132.77.4.43. Redistribution subject to AIP licens
In Fig. 20, the curves of maximum Lyapounov exponent
variation behave like those of the acoustic cases of Casetti et
al. �1997�. For the Toda lattice both acoustic and optical
excitations give the same curves, independent of the initial
amplitude of excitation. For the alpha lattice the larger the
initial amplitude the earlier the departure of the curves from
the Toda curve.

This departure toward chaos is due to the fact that, in the
jargon of nonlinear dynamics, the alpha-lattice has small “is-
lands” of chaotic behavior which the system evolves into at
sufficiently long times. It will be interesting in a future study
to characterize the size and location of the phase space is-
lands of the alpha-lattice with increasing initial amplitude.

SUMMARY

We have examined the behavior of the one-dimensional
alpha-FPU and Toda lattices to optical and acoustic excita-
tions of varying amplitude. We have used the well-known
diagnostics: Localization parameter; Lyapounov exponent,
slope of linear-fit to linear normal mode energy. Space-time
diagrams of the energy per particle and a wave related quan-
tity, the shifted-discretized Riemann invariant have also been
shown. The latter is very revealing of soliton and near-
soliton properties for the acoustic initial conditions. For the
localized optical initial conditions at very early times we
have observed, with a special filter, a three-curve state. At
later times, we observe coherent structures �packets like dis-
crete breathers� emerge following a modulational instability.
These packets interacted and a long time near-recurrence oc-
curred, at a time that was independent of the amplitude of the
excitation. This is not related to properties of the acoustic
region solitons and the phenomenon has yet to be explained.
In all cases all the diagnostic quantifiers, except the localiza-
tion parameter, showed approach to stochastic or chaotic be-

FIG. 20. Lyapounov exponent, where aa—� lattice with acoustic I.C.; ao—
� lattice with optical I.C.; ta—Toda lattice with acoustic I.C.; to—Toda
lattice with optical I.C.; xx1—�=1.12�10−2; xx2—�=5.63�10−3; xx3—
�=2.82�10−3. Note: before the � cases diverge from the Toda cases, they
share the same curve with the Toda cases.
e or copyright; see http://chaos.aip.org/about/rights_and_permissions
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aviors for the alpha-lattice at the same time. Thus with the
iagnostics shown, there is a clear separation in behaviors at
ong-time between integrable and nonintegrable systems.
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PPENDIX: LARGEST LYAPOUNOV EXPONENT

We use

��tn� =
1

tn
�
n=1

N

ln� ���tn��
���tn−1��

�
here ��t� is a tangent, which for our calculations is taken as

he particle velocity, ẏn, and tn=n�t ��t is some time inter-
al�. The computational scheme includes three steps: �1�
tart from a random velocity with a given I.C. Make the
orm of the velocity vector equal to 1; �2� choose a time
nterval �t and apply the above formula to calculate the larg-
st Lyapounov exponent. After the computation of ��tn�, at
he end of this time interval, make the norm of the velocity
ector equal to 1; �3� repeat the second step until the run
erminates.
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